Information on individual educational components (ECTS-Course descriptions) per semester

Degree programme: Bachelor Mechatronics Part-time
Type of degree: FH Bachelor´s Degree Programme
Part-time
Winter Semester 2021

Course unit title Fundamentals of Electrical Engineering 1 - Direct Current Engineering
Course unit code 024525212101
Language of instruction Deutsch
Type of course unit (compulsory, optional) Compulsory
Semester when the course unit is delivered Winter Semester 2021
Teaching hours per week 4
Year of study 2021
Number of ECTS credits allocated First Cycle (Bachelor)
Number of ECTS credits allocated 5
Name of lecturer(s) André MITTERBACHER, Reinhard SCHNEIDER


Prerequisites and co-requisites

None


Course content

Physical fundamentals of electrical engineering (electric current, charge, conduction mechanisms, current density, energy, potential, voltage, power, efficiency). Aktive and passive lumped elements (two-ports), the resistor as component, temperature influence. Basic circuit analysis: Connection of source and load, operating point, Kirchhoffs circuit laws, equivalent circuits, voltage and current divider, bridge circuit, voltage and current measurement. Controlled sources. Circuit analysis techniques for larger networks. Hazards of electric currents and protective measures. Electric field: current density field, field of the electric potential, electrostatic field, dielectrics, capacitors and basic capacitor circuits.


Learning outcomes

Fundamentals Students are able to describe the structure of matter with a focus on electrical concepts (charge, forces between charges). The atomic model according to Bohr and Sommerfeld can be explained. Students are able to describe the term “electrical conductivity” and relate is to the movement of electrical charges in a conductor. Students are able to explain the electric potential and voltage. Students can describe the role of energy sources and loads in an electric circuit. The term “work” as a transformation is understood. Examples components that facilitate the energy transfer between electric energy and non-electric energy can be given. The term “power” can be explained from a physical point of view. Students are able to use physical models to describe the different conduction mechanisms in solids, liquids and gases. Students are able to describe sensors that use conduction phenomena. For metals the electric conductivity can be calculated. Drift velocity of charges can be estimated. Circuit analysis Students are able to explain the model “two-port” and “lumped elements” and can show the advantages and disadvantages of these concepts. Different behaviors of components can be classified (active vs. passive, linear vs. non-linear). The behavior of components can be explained using their characteristic equation or I/V characteristic. The connection of one source and one load to an electric circuit can be solved. The operating point can be calculated or can be derived graphically. The Kirchhoff circuit laws are understood. Basic electric circuits can be analyzed using the Kirchhoff circuit laws. An electric circuit or parts of an electric circuit can be described using an equivalent circuit. Superposition techniques can be used to solve electric circuits. The power that is transferred in sources and loads can be calculated. The connection to between the model and the real component can be established. Optimizations in a circuit can be done. Hazards of electric current and protective measures The hazards of electric current and voltage can be explained. Protective measures can be described. Electric field The term “field” can be explained and different types of fields can be categorized. The integral equations that describe the field of the current density, the field of the electric potential and the electric field can be explained for stationary cases. The integral equations can be used to solve field problems for fundamental geometries. The influence of the electric field on materials can be described. Important materials are known. The component “capacitor” and its behavior can be described. The capacitance of simple geometries can be calculated.


Planned learning activities and teaching methods

Lecture, seminars (mandatory), labs (mandatory) and self-study.


Assessment methods and criteria

Written exam, lab and seminar assignments


Comment

None


Recommended or required reading

Führer, Arnold ; Heidemann, Klaus ; Nerreter, Wolfgang (2011a): Grundgebiete der Elektrotechnik: Band 1: Stationäre Vorgänge. 9, aktualisierte Auflage. München: Hanser. Online im Internet: dx.doi.org/10.3139/9783446430556 (Zugriff am: 24.08.2015). Führer, Arnold ; Heidemann, Klaus ; Nerreter, Wolfgang (2011b): Grundgebiete der Elektrotechnik: Band 2: Zeitabhängige Vorgänge. 9, aktualisierte Auflage. München: Hanser. Online im Internet: dx.doi.org/10.3139/9783446430549 (Zugriff am: 24.08.2015). Hagmann, Gert (2012): Aufgabensammlung zu den Grundlagen der Elektrotechnik: mit Lösungen und ausführlichen Lösungswegen; die bewährte Hilfe für Studierende der Elektrotechnik und anderer technischer Studiengänge ab dem 1. Semester. 15., durchges. und korrig. Aufl. Wiebelsheim: Aula-Verl.  Hagmann, Gert (2011): Grundlagen der Elektrotechnik: das bewährte Lehrbuch für Studierende der Elektrotechnik und anderer technischer Studiengänge ab 1. Semester; mit 4 Tabellen, Aufgaben und Lösungen. 15. durchges. und korrig. Aufl. Wiebelsheim: Aula-Verl.  Heidemann, Klaus ; Nerreter, Wolfgang ; Führer, Arnold (2008): Grundgebiete der Elektrotechnik: Band 3: Aufgaben. 2, neu bearbeitete Auflage. München: Hanser. Online im Internet: dx.doi.org/10.3139/9783446439078 (Zugriff am: 24.08.2015). Küpfmüller, Karl  u. a. (2013): Theoretische Elektrotechnik: eine Einführung. 19., aktualisierte Aufl. Berlin (u.a.): Springer Vieweg.  (= Springer-Lehrbuch). Online im Internet: dx.doi.org/10.1007/978-3-642-37940-6 (Zugriff am: 09.07.2015).Prechtl, Adalbert (1994): Vorlesungen über die Grundlagen der Elektrotechnik. Wien (u.a.): Springer.


Mode of delivery (face-to-face, distance learning)

Face-to-face